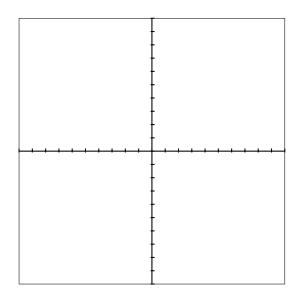
Name:

A polynomial function is a function of the form

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

where $a_i \in \mathbb{R}$ and $a_n \neq 0$. The degree of f(x) is $\deg(f) = n$. The real numbers a_i are the coefficients of f(x). The leading coefficient of f(x) is a_n . The constant coefficient of f(x) is a_0 .

The zeros, or roots, of f(x) are the complex solutions to the equation f(x) = 0.


The y-intercept of f(x) is the point (0, f(0)).

The x-intercepts of f(x) are the points (r,0), where r is a real root of f(x).

The shape of f(x) is

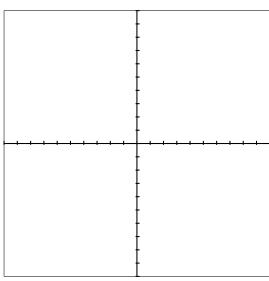
- (a) +|+ if n is even and $a_n > 0$;
- (b) -|- if n is even and $a_n < 0$;
- (c) -|+ if n is odd and $a_n > 0$;
- (d) + |- if n is odd and $a_n < 0$.

Find the degree, leading coefficient, roots, intercepts, and shape of f(x). Use the intercepts and the shape to sketch the graph of f(x).

Problem 1: $f(x) = 8 - 2x^2$

Degree:

Leading Coefficient:


Constant Coefficient:

Zeros:

y-intercept:

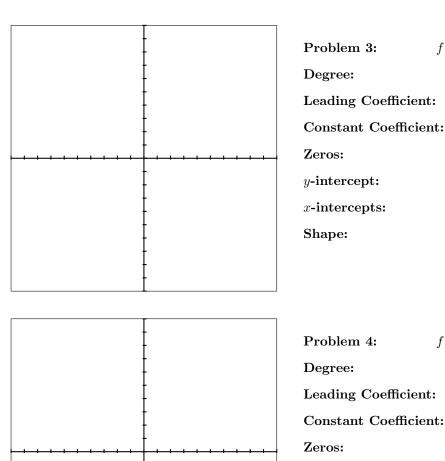
x-intercepts:

Shape:

Problem 2: $f(x) = x^3 - 5x^2 - 2x + 10$

Degree:

Leading Coefficient:

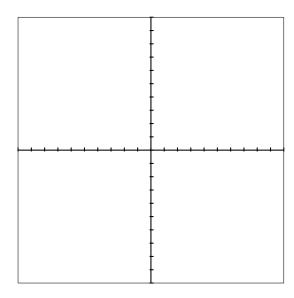

Constant Coefficient:

Zeros:

y-intercept:

x-intercepts:

Shape:


 $f(x) = \sqrt{11} - 3x$

y-intercept:

x-intercepts:

Shape:

 $f(x) = x^3 - 5x^2 + x + 15$ Problem 5:

Degree:

Leading Coefficient:

Constant Coefficient:

Zeros:

y-intercept:

x-intercepts:

Shape:

Hint: Guess a zero z via the Rational Zeros Theorem, find $f(x) \div (x-z)$, then factor.)